
Design concepts  

 
A set of fundamental software design concepts has evolved over the history of software 

engineering are as follows. 

 

1. Abstraction 
 

• Solution to any software problem represented with many levels of abstraction. 

• At Highest level of abstraction state the solution in broad terms. 

• At lower level of abstraction more detailed descriptions are added to solution. 

• At lowest level of abstraction solution is stated in a manner, that can be directly 

implemented. 

• We can create procedural abstraction and data abstraction with different levels. 

• Procedural abstraction: it is a specific sequence of instructions with limited function. 

For example, open a door is a procedural abstraction, the word open implies long 

sequence of instructions. 

• Data abstraction: it is a collection of data that describes data object. In case of 

procedural abstraction open the door, we can define data abstraction for door, that 

contains various properties of door. 

 

2. Architecture 

 

• Software architecture gives us “the overall structure of the software”.  

• In simple terms it is the organization of components, interaction among the 

components and the structure of data used by those components. 

• Architecture gives us framework from which more design details are added. 

• Properties are to be considered as part of architectural design: 

• Structural properties define the components of the systems, and how these 

components are connected and interact with one another. 

• Extra-functional properties address how the architecture meets non-functional 

requirements. 

• Families of related systems addresses the ability to reuse architectural building 

blocks. 

 

3. Patterns 

 

• Design pattern is a general repeatable solution to a common problems in software 

design. 

• It is a description or template for how to solve a problem that can be used in many 

different situations.  

 

4. Separation of Concerns 
 

• It is suggested that any complex problem can be easily handled by dividing it into 

pieces and solve them independently. 

• A concern is a feature or behaviour that is specified in the requirements model. 



 

5. Modularity 
 

• Software is divided into separately named and addressable components, sometimes 

called modules. 

• Modules are to be integrated later to satisfy system requirements.  

• Modularity is the single attribute of a software that permits a program to be managed 

easily. 

• Modularity makes understanding of design modules easier, as a result it reduces the 

cost of the software to be built. 

 

6. Information hiding 
 

• The basic principle of information hiding is thet modules must hide from one another. 

• Effective modularity can be achieved by defining modules as much as independent as 

possible. 

• Access constraints are enforced on both procedural details and local data structure of 

a module. 

• Information hiding provides the greatest benefits when modifications are required in 

software as part of maintenance. 

 

7. Functional independence 
 

• To achieve functional independence modules are to be developed with “single 

minded” function and little interaction with other modules.  

• In simple terms, modules should be designed in a manner that they should address 

specific requirement and has simple interface with other nodules. 

• Independent modules are easy to maintain as modifications and error propagations are 

limited, and can be reusable.  

 

The functional independence is accessed using two criteria: Cohesion and coupling. 

i. Cohesion 

 

• it is an indication of relative strength of a module and is natural extension to 

information hiding. 

• A cohesive module performs a single task and has less interaction with the other 

modules.  

• A good design should always strive to achieve high cohesion. 

 

ii. Coupling 

 

• Coupling is an indication of interconnection between modules in a structure of 

software and depends on interface complexity. 

• A good design should always strive to achieve low coupling. 

 

8. Refinement 

• Refinement is a process of elaboration. 

• Abstraction and Refinement are complementary concepts. Where abstraction 

suppresses internal details and refinement reveals internal details of modules.  



 

9. Aspects 
 

• During the requirement model each requirement is considered independently, but in 

practice requirements cannot isolated easily. 

• An aspect is a representation of a cross-cutting concern. It means that when A and B 

are two requirements, B cannot be satisfied without considering A.  

• During the design process requirements, A and B are refined into A* and B*. 

• Here the design concern is that B* cross-cuts A*. 

 

10. Refactoring 
 

• It is a reorganization technique which simplifies the design of components without 

changing its function behaviour. 

• Refactoring is the process of changing the software system in a way that it does not 

change the external behaviour of the code still improves its internal structure. 

 

11 Object-Oriented Design Concepts  
 

• The object-oriented (OO) paradigm is widely used in modern software engineering.  

• The object-oriented concepts are classes and objects, inheritance, messages, and 

polymorphism and other.  

 

12. Design classes 
 

• The design model evolves, we shroud define set of design classes such as user 

interface classes, business domain classes, process classes, persistent classes, system 

classes. 

• Design classes provide more technical detail and they act as a guide for 

implementation.  

 

Text Books 
1. Roger Pressman S., “Software Engineering: A Practitioner's Approach”, 7th Edition, 

McGraw Hill, 2010. 

2. Sommerville, “Software Engineering”, Eighth Edition, Pearson Education, 2007 

 

Web Links: 

1. https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-355j-software-

engineering-concepts-fall-2005/lecture-notes/cnotes4.pdf 

2. https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-355j-software-

engineering-concepts-fall-2005/lecture-notes/cnotes5.pdf  

3. https://drive.google.com/file/d/1-e8kYCqYRhk1Dg_JKdSXbcWNNZXxf632/view 

4. https://cdn.shopify.com/s/files/1/0457/4009/7694/files/software_engineering_pdf_pre

ssman_7th_edition.pdf  

https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-355j-software-engineering-concepts-fall-2005/lecture-notes/cnotes4.pdf
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-355j-software-engineering-concepts-fall-2005/lecture-notes/cnotes4.pdf
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-355j-software-engineering-concepts-fall-2005/lecture-notes/cnotes5.pdf
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-355j-software-engineering-concepts-fall-2005/lecture-notes/cnotes5.pdf
https://drive.google.com/file/d/1-e8kYCqYRhk1Dg_JKdSXbcWNNZXxf632/view
https://cdn.shopify.com/s/files/1/0457/4009/7694/files/software_engineering_pdf_pressman_7th_edition.pdf
https://cdn.shopify.com/s/files/1/0457/4009/7694/files/software_engineering_pdf_pressman_7th_edition.pdf

