Design concepts

A set of fundamental software design concepts has evolved over the history of software
engineering are as follows.

1. Abstraction

e Solution to any software problem represented with many levels of abstraction.

o At Highest level of abstraction state the solution in broad terms.

o At lower level of abstraction more detailed descriptions are added to solution.

o At lowest level of abstraction solution is stated in a manner, that can be directly
implemented.

e We can create procedural abstraction and data abstraction with different levels.

e Procedural abstraction: it is a specific sequence of instructions with limited function.
For example, open a door is a procedural abstraction, the word open implies long
sequence of instructions.

« Data abstraction: it is a collection of data that describes data object. In case of
procedural abstraction open the door, we can define data abstraction for door, that
contains various properties of door.

2. Architecture

o Software architecture gives us “the overall structure of the software”.

e Insimple terms it is the organization of components, interaction among the
components and the structure of data used by those components.

o Architecture gives us framework from which more design details are added.

o Properties are to be considered as part of architectural design:

o Structural properties define the components of the systems, and how these
components are connected and interact with one another.

o Extra-functional properties address how the architecture meets non-functional
requirements.

o Families of related systems addresses the ability to reuse architectural building
blocks.

3. Patterns

o Design pattern is a general repeatable solution to a common problems in software
design.

e Itisa description or template for how to solve a problem that can be used in many
different situations.

4. Separation of Concerns

e Itissuggested that any complex problem can be easily handled by dividing it into
pieces and solve them independently.
e A concern is a feature or behaviour that is specified in the requirements model.



5. Modularity

Software is divided into separately named and addressable components, sometimes
called modules.

Modules are to be integrated later to satisfy system requirements.

Modularity is the single attribute of a software that permits a program to be managed
easily.

Modularity makes understanding of design modules easier, as a result it reduces the
cost of the software to be built.

6. Information hiding

The basic principle of information hiding is thet modules must hide from one another.
Effective modularity can be achieved by defining modules as much as independent as
possible.

Access constraints are enforced on both procedural details and local data structure of
a module.

Information hiding provides the greatest benefits when modifications are required in
software as part of maintenance.

7. Functional independence

To achieve functional independence modules are to be developed with “single
minded” function and little interaction with other modules.

In simple terms, modules should be designed in a manner that they should address
specific requirement and has simple interface with other nodules.

Independent modules are easy to maintain as modifications and error propagations are
limited, and can be reusable.

The functional independence is accessed using two criteria: Cohesion and coupling.
i. Cohesion

it is an indication of relative strength of a module and is natural extension to
information hiding.

A cohesive module performs a single task and has less interaction with the other
modules.

A good design should always strive to achieve high cohesion.

ii. Coupling

Coupling is an indication of interconnection between modules in a structure of
software and depends on interface complexity.
A good design should always strive to achieve low coupling.

8. Refinement

Refinement is a process of elaboration.
Abstraction and Refinement are complementary concepts. Where abstraction
suppresses internal details and refinement reveals internal details of modules.



9. Aspects

« During the requirement model each requirement is considered independently, but in
practice requirements cannot isolated easily.

e An aspect is a representation of a cross-cutting concern. It means that when A and B
are two requirements, B cannot be satisfied without considering A.

e During the design process requirements, A and B are refined into A* and B*.

o Here the design concern is that B* cross-cuts A*.

10. Refactoring

e Itisareorganization technique which simplifies the design of components without
changing its function behaviour.

o Refactoring is the process of changing the software system in a way that it does not
change the external behaviour of the code still improves its internal structure.

11 Object-Oriented Design Concepts

e The object-oriented (OO) paradigm is widely used in modern software engineering.
e The object-oriented concepts are classes and objects, inheritance, messages, and
polymorphism and other.

12. Design classes

e The design model evolves, we shroud define set of design classes such as user
interface classes, business domain classes, process classes, persistent classes, system
classes.

o Design classes provide more technical detail and they act as a guide for
implementation.

Text Books
1. Roger Pressman S., “Software Engineering: A Practitioner's Approach”, 7th Edition,
McGraw Hill, 2010.
2. Sommerville, “Software Engineering”, Eighth Edition, Pearson Education, 2007

Web Links:

1. https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-355j-software-
engineering-concepts-fall-2005/lecture-notes/cnotes4.pdf

2. https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-355j-software-

engineering-concepts-fall-2005/lecture-notes/cnotess. pdf

https://drive.google.com/file/d/1-e8kYCqgYRhk1Dg JKdSXbcWNNZXxf632/view

4. https://cdn.shopify.com/s/files/1/0457/4009/7694/files/software_engineering_pdf pre

w

ssman 7th edition.pdf



https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-355j-software-engineering-concepts-fall-2005/lecture-notes/cnotes4.pdf
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-355j-software-engineering-concepts-fall-2005/lecture-notes/cnotes4.pdf
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-355j-software-engineering-concepts-fall-2005/lecture-notes/cnotes5.pdf
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-355j-software-engineering-concepts-fall-2005/lecture-notes/cnotes5.pdf
https://drive.google.com/file/d/1-e8kYCqYRhk1Dg_JKdSXbcWNNZXxf632/view
https://cdn.shopify.com/s/files/1/0457/4009/7694/files/software_engineering_pdf_pressman_7th_edition.pdf
https://cdn.shopify.com/s/files/1/0457/4009/7694/files/software_engineering_pdf_pressman_7th_edition.pdf

