
Design process

• Software design is an iterative process through which requirements are translated into

a “blueprint” for constructing the software.

• Initially, the design is represented at a high level of abstraction.

• As design iterations occur, the design is represented at much lower levels of abstraction.

Software Quality Guidelines and Attributes
Three characteristics that serve as a guide for the evaluation of a good design:

• All of the explicit requirements contained in the requirements model and all of the

implicit requirements desired by stakeholders must be implemented during the design.

• The design must be a readable, understandable guide for developers those who generate

code and testers those who test and subsequently support the software.

• The design should provide a complete picture of the software from an implementation

perspective by addressing the data, functional, and behavioural domains.

Software quality guidelines
1. A design should create an architecture using the recognizable architectural styles and

composed of components with good design characteristic and it is implemented in

evolutionary manner for testing.

2. A design should be modular, that is the software must be logically partitioned into

elements.

3. A design should represent data, architecture, interface and components in well-defined

manner.

4. A design should lead to proper data structure.

5. A design should lead to components with independent functional characteristic.

6. A design should lead to simple interface with minimum connections between the

components.

7. A design should be derived iteratively with the obtained information from software

requirement analysis.

8. The notations used in design representation should effectively communicates its

meaning.

Quality attributes

The attributes of design given in the acronym 'FURPS' are listed as follows:

Functionality:

It is assessed by evaluating the feature set and capabilities of the program, functionality

delivered and security of overall system.

Usability:

It is accessed by considering the human factors, overall aesthetics, consistency and

documentation.

Reliability:

It is evaluated by measuring parameters like frequency and severity of failure, accuracy of

output result, the mean-time-to-failure(MTTF), recovery from failure and the program

predictability.

Performance:

It is measured by considering processing speed, response time, resource consumption,

throughput and efficiency.

Supportability:

• It combines the ability to extend the program, adaptability, serviceability. These three

factors represent common term maintainability.

• Testability, compatibility and configurability are the terms used with which a system

can be easily installed and found the problem easily.

• Supportability also consists of more attributes such as compatibility, extensibility, fault

tolerance, modularity, reusability, robustness, security, portability, scalability.

The Evolution of Software Design
The evolution of software design is a continuing process that has now spanned almost six

decades. Early design focus on development of modular programs in top down manner, that is

called as structured programming.

Newer design approaches proposed an object-oriented approach to design that is bottom up

manner.

Each software design method introduces unique approach.

All of the above-mentioned design methods have common characteristics

1. A mechanism for the translation of the requirements model into a design representation

2. A notation for representing functional components and their interfaces

3. Heuristics for refinement and partitioning.

4. Guidelines for quality assessment.

Text Books:
1. Roger Pressman S., “Software Engineering: A Practitioner's Approach”, 7th Edition,

McGraw Hill, 2010.

2. Sommerville, “Software Engineering”, Eighth Edition, Pearson Education, 2007

Web Links

1. https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-355j-software-

engineering-concepts-fall-2005/lecture-notes/cnotes4.pdf

2. https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-355j-software-

engineering-concepts-fall-2005/lecture-notes/cnotes5.pdf.

3. https://cdn.shopify.com/s/files/1/0457/4009/7694/files/software_engineering_pdf_pressm
an_7th_edition.pdf

https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-355j-software-engineering-concepts-fall-2005/lecture-notes/cnotes4.pdf
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-355j-software-engineering-concepts-fall-2005/lecture-notes/cnotes4.pdf
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-355j-software-engineering-concepts-fall-2005/lecture-notes/cnotes5.pdf
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-355j-software-engineering-concepts-fall-2005/lecture-notes/cnotes5.pdf
https://cdn.shopify.com/s/files/1/0457/4009/7694/files/software_engineering_pdf_pressman_7th_edition.pdf
https://cdn.shopify.com/s/files/1/0457/4009/7694/files/software_engineering_pdf_pressman_7th_edition.pdf

