GOVERNMENTIOEFANDHRAYRRADESH
COMMISSIONERATE OF COLLEGIATE EDUCATION

D ESIGNICONECERIES

Software Engineering

Computer Science

Sovart Leaming. Y
N\addmmﬁwa\wws \

Smt. G.Sumalatha wmrech,(php)

Govt. Degree College , Salur
Email. Id : sumalathagopathoti@gmail.com

Learn more at http://ccelms.ap.gov.in



Objectives

* Describe various design concepts.

* Discuss the use of design concepts.

* Describe the different levels of software design.

* Discuss the need of decomposition.

* Describe the concepts related to modern software engineering.




Design Concepts

* Fundamental software design concepts are listed as follows

1. Abstraction /. Functional Independence

2. Architecture 8. Refinement

3. Pattern 9. Aspects

4. Separation of concerns 10. Refactoring

5. Modularity 11. Object-oriented design concepts

__ | 6. Information hiding 12. Design classes




Abstraction

« Solution to any software problem represented with many levels of
abstraction.

* At
* At
* At

Highest level of abstraction state the solution in broad terms.
ower level of abstraction more detailed description is added to solution.

owest level of abstraction solution is stated in a manner, that can be

directly implemented.

 \We can create procedural abstraction and data abstraction with different
levels

o Procedural abstraction: Sequence of instructions with limited function.

o Data abstraction: it Is a collection of data that describes data object.




Architecture

* |t is the “the overall structure of the software”.

* In simple terms it is the organization of components, interaction among the
components and the structure of data used by those components.

« Architecture gives us framework from which more design details are added.

Architectural design properties :

o Structural properties defines the components of the systems, and how these
components are connected and interact with one another.

 Extra-functional properties addresses how the architecture meets non-functional
requirements.

« Families of related systems addresses the ability to reuse architectural building
blocks




Patterns

 Design pattern is a general repeatable solution to a common problems
In software design.

* It Is a description or template for how to solve a problem that can be
used in many different situations.




Separation of Concerns

* |t Is suggested that any complex problem can be easily handled by
dividing it into pieces and solve them independently.

« A concern Is a feature or behaviour that is specified in the
requirements model.




Modularity

« Software Is divided into separately named and addressable

com
 Mod

nonents, sometimes called modules.

ules are to integrated later to satisfy system requirements.

Moo

ularity is the single attribute of a software that permits a program

to be managed easily.

« Modularity makes understanding of design modules easier, as a result
It reduces the cost of the software to be built.




Information Hiding

* The basic principle of information hiding Is that modules must hide
from one another.

« Effective modularity can be achieved by defining modules as much as
Independent as possible.

 Access constraints are enforced on both procedural details and local
data structure of a module.

* Information hiding provides the greatest benefits when modifications
are required in software as part of maintenance.




Functional Independence

* Modules are to be developec

| with “single minded” function and little

Interaction with other modules.

* Modules should address specific requirement and has simple interface

with other modules.

* Independent modules are easy to maintain as they have

o limited modifications.
o limited error propagations.

oreusable.




Functional Independence Criteria

Cohesion

e It Is an indication of relative strength of a module and is natural
extension to information hiding.

* A cohesive module performs a single task and has less interaction with
the other modules.

A good design should always strive to achieve high cohesion.
Coupling

 Coupling is an indication of interconnection between modules.
A good design should always strive to achieve low coupling.




Refinement

» Refinement is a process of elaboration.
 Abstraction and Refinement are complementary concepts.

 Abstraction suppresses internal details and refinement reveals internal
details of modules.




Aspects

 During the requirement model each requirement is considered
Independently, but In practice requirements can not isolated easily.

* An aspect Is a representation of a cross-cutting concern.

* |t means that when A and B are two requirements, B can not be
satisfied with out considering A.

* During the design process requirements A and B are refined into A*
and B*.

 Here the design concern is that B* cross-cuts A*.




Refactoring

* |t IS a reorganization technique.

* |t simplifies the design of the components without changing Iits
functional behaviour.

* |t IS the process of changing the software system in such a manner that
o Should not alter its external behaviour.
o Improve its internal structure.




Object-oriented Design Concepts

 The object-oriented (OO) paradigm is widely used in modern software
engineering.
* The OO concepts are
o Classes and objects
o Inheritance
o Abstraction
o Encapsulation
o Polymorphism and other.




Design Classes

 The design model evolves, we should define set of design classes.
 User interface classes
 Business domain classes
* Process classes
* Persistent classes
 System classes

» Design classes provide more technical details.

 They act as a guide for implementation.




Summary

o Abstraction hides internal details where as refinement reveals the
Information.

 Architecture is overall structure of the software.
* Patterns provides repeatable solution to common problems.

* Modularity divides the software into modules, functional
independence makes the modules “single minded”.

 Aspects deals with the dependent requirements, refactoring improves
the structure of a module.

 Object oriented concepts and design classes.




References

Text Books:

1. Roger Pressman S., “Software Engineering: A Practitioner's Approach”, 7th Edition,
McGraw Hill, 2010.

2. Sommerville, “Software Engineering”, Eighth Edition, Pearson Education, 2007
Web Links:

1. https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-355j-software-engineering-
concepts-fall-2005/lecture-notes/cnotes4.pdf

2. https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-355j-software-engineering-
concepts-fall-2005/lecture-notes/cnotess.pdf

3. https://drive.google.com/file/d/1-e8kYCaYRhk1Dg JKdASXbcWNNZXxf632/view

4,
https://cdn.shopify.com/s/files/1/0457/4009/7694/files/software_engineering_pdf pressman

| _/th_edition.pdf -



https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-355j-software-engineering-concepts-fall-2005/lecture-notes/cnotes4.pdf
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-355j-software-engineering-concepts-fall-2005/lecture-notes/cnotes5.pdf
https://drive.google.com/file/d/1-e8kYCqYRhk1Dg_JKdSXbcWNNZXxf632/view
https://cdn.shopify.com/s/files/1/0457/4009/7694/files/software_engineering_pdf_pressman_7th_edition.pdf

Thank You

Smt. G. Sumalatha MTech, (PhD),

email ID:sumalathagopathoti@gmail.com




