
Evolutionary Process Models

Evolutionary process models are iterative type models. Using these models, the developer can

develop increasingly more complete versions of the software.

When are we going to use evolutionary process models?

• To build complex versions of the software.

• Requirements are not clear.

There are two common evolutionary process models.

1. Prototyping Model

2. Spiral Model

Prototyping Model
Prototyping is best suited for the software projects with the following cases.

• Customer state the problem with a set of general objectives, but does not identify

detailed requirements for functions and features of the software.

• Developer unsure of the efficiency of the algorithmic, form of human machine

interaction and development environment.

Prototyping can be used together with other models for elicitation of requirements. Prototyping

paradigm helps us to better understand the requirements.

The prototyping paradigm begins with communication, developer meet with other stakeholders

to define the overall objectives for the software, identify whatever requirements are known,

and outline areas where further definition is required.

After completion of communication activity, quick plan, modelling and quick design takes

place. A quick design focuses on a representation of the soft-ware that will be visible to end

users, human interface layout or output display format. The quick design leads to the

construction of a prototype. The prototype is deployed and evaluated by stakeholders; they

provide feedback that is used to further refine requirements.

Communication

Deployment,

Delivery &

 Feedback

Quick Plan

Prototype

Construction

Modeling

Quick Design

Figure: Prototyping Model

The prototype can serve as “the first system.” Some prototypes are “Throw Away” while others

also evolve and become part of the actual system.

Both stakeholders and software engineers like the prototyping paradigm. Users get a feel for

the actual system, and developers get to build something immediately.

Advantages:

• Since this methodology provides quick working version of the software, the users get a

better understanding of the system being developed.

• Errors can be detected much easier.

• Quicker user feedback is available leading to better solution.

• Missing functionality can be easily identified.

Disadvantages:

• Implementation compromises often make in order to get a prototype working quickly.

• There is no guarantee of software quality as prototype rush to get working.

Spiral Model
Originally proposed by Barry Boehm [Boe88], the spiral model is an evolutionary software

process model that couples the iterative nature of prototyping with the controlled and

systematic aspects of the waterfall model.

Using the spiral model, software is developed in a series of evolutionary releases. During early

iterations, the release might be a model or prototype. During later iterations, increasingly more

complete versions of the software are produced.

Figure: Spiral Model

A spiral model is divided into a set of framework activities defined by the software engineering

team. The initial activity is shown from centre and developed in clockwise direction.

The first circuit around the spiral might result in the development of a product specification;

subsequent passes around the spiral might be used to develop a prootype and then progressively

more sophisticated versions of the software.

Advantages:

1. Unlike other process models that end when software is delivered, the spiral model can

be adapted to apply throughout the life of the computer software.

2. The developer and customer better understand and react to risks at each evolutionary

level.

3. Schedule and cost are more realistic.

4. Changes can be accommodated in the later stages of development.

Disadvantages:

1. If major risk is not discovered in early iteration of spiral, it may become a major risk in

the later stages.

2. Each iteration around the spiral leads to more completed version of software. But it’s

difficult to convince to the customer that the model is controllable.

3. Cost of this approach is usually high.

4. Not suitable for low risk management.

5. Rules and protocols must be followed very strictly to implement the approach.

Text Books

1. Roger Pressman S., “Software Engineering: A Practitioner's Approach”, 7th Edition,

McGraw Hill, 2010.

2. Sommerville, “Software Engineering”, Eighth Edition, Pearson Education, 2007

Web Links

1. https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-355j-software-

engineering-concepts-fall-2005/lecture-notes/cnotes2.pdf

2. https://cdn.shopify.com/s/files/1/0457/4009/7694/files/software_engineering_pdf_pre

ssman_7th_edition.pdf

3. https://images.app.goo.gl/c9TJtajtyzgrLo1i6

https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-355j-software-engineering-concepts-fall-2005/lecture-notes/cnotes2.pdf
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-355j-software-engineering-concepts-fall-2005/lecture-notes/cnotes2.pdf
https://cdn.shopify.com/s/files/1/0457/4009/7694/files/software_engineering_pdf_pressman_7th_edition.pdf
https://cdn.shopify.com/s/files/1/0457/4009/7694/files/software_engineering_pdf_pressman_7th_edition.pdf
https://images.app.goo.gl/c9TJtajtyzgrLo1i6

