Requirement Modelling Approaches

Requirements modelling can be done with two approaches structured analysis, object-oriented
analysis.

Structured analysis considers data and the processes that transform the data as separate entities.
Data objects are modelled in a way that defines their attributes and relationships. Processes that
manipulate data objects are modelled in a manner that shows how they transform data as data
objects flow through the system.

A second approach to analysis modelled, called object-oriented analysis, focuses on the
definition of classes and the manner in which they collaborate with one another to effect
customer requirements.

Although the analysis model that we discuss combines features of both approaches. The
question is not which is best, but rather, what combination of representations will provide
stakeholders with the best model of software requirements and the most effective bridge to
software design.

Each element of the requirements model in the following figure presents the problem from a
different point of view.

Scenario-based Class-based

models _— | | models

e.g., e.g.,

usecases Class diagrams

User stories Collaboration diagrams

SoftD
Req uiremey

Behavioral Flow
models models
e.g., e.g.,
State diagrams DFDs

Sequence diagrams ~___ | | Datamodels

Figure: Elements of Requirement Model

Analysis modelling leads to the derivation of each of these modelling elements. software team
must work on those modelling elements that add value to the model.

Scenario-Based Modelling
Requirements modelling with UML (Unified Modelling Language) begins with the creation of
scenarios in the form of use cases, activity diagrams.

Creating a Preliminary Use Case

To begin developing a set of use cases, list the functions or activities performed by a specific
actor. You can obtain these from a list of required system functions, through conversations
with stakeholders, or by an evaluation of activity diagrams.

The ATM system, Customer actor performs the following actions
e Login into the system.
e Withdraw money.
o Deposit money.
« Balance enquiry.
o Take mini transaction statement.

The requirements gathering team develops use cases for each of the functions noted. use cases
are written first in an informal narrative fashion. If more formality is required, the same use
case is rewritten using a structured format.

Consider Use case: Withdraw amount. customer narrates this usecase as follows
Actor: Customer

Customer inserts their bank card into the card reader on the ATM. The system reads the bank
card information from the card then system authenticates customer by validating the four-digit
pin number entered. The system displays service options available on the machine, then
customer selects withdraw cash option. The system prompts for the amount to be withdrawn
by displaying the list of standard withdrawal amounts. The Customer selects an amount to be
withdrawn. The system dispenses the requested amount of cash to the Customer. The system
records a transaction log entry for the withdrawal. Customer access funds on hand. The system
ejects the Customer’s bank card. The system records a transaction log entry for the withdrawal.

Structured format results in sequence of action performed by customer

Use case: Withdraw cash.
Actor: homeowner

The customer inserts ATM card.

The customer selects the language.

The customer enters 4-digit ATM pin.

The customer selects the type of transaction.
The customer selects the type of account.
The customer enters the withdrawal amount.
The customer collects the cash.

The customer takes the printout if needed.
The customer goes for another transaction.

CoNoR~LNE

Refining a Preliminary Use Case
each step in the primary scenario is evaluated, and look for secondary scenario.
For example, consider steps 3 and 6 in the primary scenario presented:

3.The customer enters 4-digit ATM pin.

6.The customer enters the withdrawal amount.

Can the actor take some other action at this point? The answer is “yes.”

Is it possible that the actor will encounter some error condition at 3" step? “Customer could
nor enter into the system”. This error condition becomes a secondary scenario.

Is it possible that the actor will encounter some other behaviour at this point? If yes, the
customer again inserts the card and then enter valid four-digit pin number.

Each of the situations described above is characterized as a use-case exception. An exception
should be noted within the use case or In some cases, an exception will precipitate the
development of another use case.

Writing a Formal Use Case
Usecase are written formally, by specifying its goal, prerequisites, trigger condition, scenarios
and exceptions.

In many cases, there is no need to create a graphical representation of a usage scenario.
However, diagrammatic representation can facilitate understanding, particularly when the
scenario is complex.

The following figure depicts a preliminary use-case diagram for the ATM System.

ATM System
-
N AN
v N ndS N

Figure: Preliminary usecase diagram for ATM system

Class-Based Modelling
The elements of a class-based model include classes and objects, attributes, operations, class
responsibility-collaborator (CRC) models, collaboration diagrams, and packages.

class diagrams
« Identify the classes by examining use cases developed for the system to be built.
e Classes are identified by looking at the nouns such as external entities, things,
occurrence of events, roles, organizational units, places, and structures.
o Develop meaningful set of attributes of the identified classes.

« Define operations that manipulate data, enquiry about state of the object, that perform
computations, operations that monitor an object.
o Toillustrate, we consider the Customer class defined for ATM system.

' Customer '

name
phoneNumber
Address

dob

accountNumber

withdraw()
deposit()
balenceEnquiry()
transfer()

.

Figure: Class diagram for customer class in ATM System

Class Responsibility Collaborator Model

* CRC models helps us to identify and organize classes of that are relevant to product
requirements.

» This model makes use of actual or virtual index cards, that are used to develop organised
representation of classes.

» Index cards consist of responsibilities and collaborators.

» Responsibilities are anything that class knows or does something.

» Collaborators are those classes that provide information to fulfil a responsibility.

Class: Withdrawal Transaction

Description
Get specifics from customer ATM, Session
Send to bank BANK

Dispense cash, issue receipt, notify bank ~ ATM

Figure: CRC Model virtual index card

Collaboration Diagram
* Itisalso called as communication diagram.
 Illustrate relationships and interactions among various classes.
» These are used to model dynamic behaviour of usecases.

2 1 Enter Kind()
4 : Enter Amount()
13 : Terminate()

5 : Process Transaction() -
Account - ATM Machine Bank Client

— -
8 1 Transaction Successful()

1 : Regest Kind()
3 : Request Amount()
9 : Dispense Cash()
10 : Request Take Cash()
\ \ 11 : Take Cash()

7 1 Withdrawal Successful() 12 : Request Continuation()
14 : Print Receipt()

6 : Withdraw from Checking Account()

Checking Account

Figure: Collaboration Diagram for ATM System
https://images.app.goo.gl/nYZa8qwgeocXtLn

Text Books
1. Roger Pressman S., “Software Engineering: A Practitioner's Approach”, 7th Edition,
McGraw Hill, 2010.
2. Sommerville, “Software Engineering”, Eighth Edition, Pearson Education, 2007.

Web Links

1. https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-355j-software-
engineering-concepts-fall-2005/lecture-notes/cnotes2. pdf

2. https://drive.google.com/file/d/1noLGVIM2QpD vmxMDziGyFVXGdI4BBUu/view

3. https://drive.google.com/file/d/1K327JTpX4P1DPjINurjKznzZKoBk2Qot/view

4. http://www.cs.fsu.edu/~baker/swel/restricted/templates/rr631gvl_stuwrk withdraw
cash_use-case_spec.pdf

5. https://cdn.shopify.com/s/files/1/0457/4009/7694/files/software_engineering_pdf pre
ssman_7th_edition.pdf

https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-355j-software-engineering-concepts-fall-2005/lecture-notes/cnotes2.pdf
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-355j-software-engineering-concepts-fall-2005/lecture-notes/cnotes2.pdf
https://drive.google.com/file/d/1noLGVIm2QpD_vmxMDziGyFVXGdI4BBUu/view
https://drive.google.com/file/d/1K327JTpX4P1DPjlNurjKznzZKoBk2Qot/view
http://www.cs.fsu.edu/~baker/swe1/restricted/templates/rr631gv1_stuwrk_withdraw_cash_use-case_spec.pdf
http://www.cs.fsu.edu/~baker/swe1/restricted/templates/rr631gv1_stuwrk_withdraw_cash_use-case_spec.pdf
https://cdn.shopify.com/s/files/1/0457/4009/7694/files/software_engineering_pdf_pressman_7th_edition.pdf
https://cdn.shopify.com/s/files/1/0457/4009/7694/files/software_engineering_pdf_pressman_7th_edition.pdf

