
Tree

Tree
• A tree is a nonlinear data structure used to represent entities that are

in some hierarchical relationship

Linear vs Non-Linear Data Structures

Linear vs Non-Linear Data Structures

Tree
• A tree is a nonlinear data structure used to represent entities that are

in some hierarchical relationship

• Examples in real life:
• Family tree

• Table of contents of a book

• Class inheritance hierarchy in Java

• Computer file system (folders and subfolders)

• Decision trees

• Top-Down Design

Family Tree

Computer File Systems

Top-Down Design

Tree-Definition
• A tree is a hierarchical data structure defined as a collection of nodes

and edges. Nodes represent value and nodes are connected by edges.

• A tree has the following properties:
• The tree has one node called root. The tree originates from this, and hence it

does not have any parent.

• Each node has one parent only but can have multiple children.

• Each node is connected to its children via edge.

Tree Terminology

Nodes

Edges

Root

Parent or predecessor

Leaf node

Interior node

Child or successor

Siblings

Ancestors of a node

Descendants of a node

Path/Traversing

Height of Node

Depth of Node

Height of Tree

Levels of Node

Degree of Node

Subtree

Root

Parent of
D,E,F

Nodes: Individual Elements in Tree

Tree Terminology

Nodes

Edges

Root

Parent or predecessor

Leaf node

Interior node

Child or successor

Siblings

Ancestors of a node

Descendants of a node

Path/Traversing

Height of Node

Depth of Node

Height of Tree

Levels of Node

Degree of Node

Subtree

Root

Parent of
D,E,F

The connecting link between any two nodes is called as an edge.
In a tree with n number of nodes, there are exactly (n-1) number of
edges.

Tree Terminology

Nodes

Edges

Root

Parent or predecessor

Leaf node

Interior node

Child or successor

Siblings

Ancestors of a node

Descendants of a node

Path/Traversing

Height of Node

Depth of Node

Height of Tree

Levels of Node

Degree of Node

Subtree

Root

Parent of
D,E,F

The first node from where the tree originates is called as a root node.
In any tree, there must be only one root node.
We can never have multiple root nodes in a tree data structure.

The node which has a branch from it to any other node is called as a parent node.
In other words, the node which has one or more children is called as a parent node.
In a tree, a parent node can have any number of child nodes.

Tree Terminology

Nodes

Edges

Root

Parent or predecessor

Leaf node

Interior node

Child or successor

Siblings

Ancestors of a node

Descendants of a node

Path/Traversing

Height of Node

Depth of Node

Height of Tree

Levels of Node

Degree of Node

Subtree

Leaf Node

The node which does not have any child is called as a leaf node.
Leaf nodes are also called as external nodes or terminal nodes.

Tree Terminology

Nodes

Edges

Root

Parent or predecessor

Leaf node

Interior node

Child or successor

Siblings

Ancestors of a node

Descendants of a node

Path/Traversing

Height of Node

Depth of Node

Height of Tree

Levels of Node

Degree of Node

Subtree

The node which has at least one child is called as an internal node.
Internal nodes are also called as non-terminal nodes.
Every non-leaf node is an internal node.

Tree Terminology

Nodes

Edges

Root

Parent or predecessor

Leaf node

Interior node

Child or successor

Siblings

Ancestors of a node

Descendants of a node

Path/Traversing

Height of Node

Depth of Node

Height of Tree

Levels of Node

Degree of Node

Subtree

Sibling: The nodes that have the same parent are known as siblings.

Tree Terminology

Nodes

Edges

Root

Parent or predecessor

Leaf node

Interior node

Child or successor

Siblings

Ancestors of a node

Descendants of a node

Path/Traversing

Height of Node

Depth of Node

Height of Tree

Levels of Node

Degree of Node

Subtree

Ancestor node:- An ancestor of a node is any predecessor node on a path from
the root to that node. The root node doesn't have any ancestors.
In the tree shown in the above image, nodes A, B, and E are the ancestors of

node J.

Tree Terminology

Nodes

Edges

Root

Parent or predecessor

Leaf node

Interior node

Child or successor

Siblings

Ancestors of a node

Descendants of a node

Path/Traversing

Height of Node

Depth of Node

Height of Tree

Levels of Node

Degree of Node

Subtree

Descendant: An descendent of a node is any successor node on a path
from the node to the leaf.
The leaf node doesn't have any descendants

In the tree shown in the above image, nodes C,G and K are the
descendants of node A.

Tree Terminology

Nodes

Edges

Root

Parent or predecessor

Leaf node

Interior node

Child or successor

Siblings

Ancestors of a node

Descendants of a node

Path/Traversing

Height of Node

Height of Tree

Depth of Node

Levels of Node

Degree of Node

Subtree

Path is a number of successive edges from source node to destination
node.

Tree Terminology

Nodes

Edges

Root

Parent or predecessor

Leaf node

Interior node

Child or successor

Siblings

Ancestors of a node

Descendants of a node

Path/Traversing

Height of Node

Height of Tree

Depth of Node

Levels of Node

Degree of Node

Subtree

Height of a node represents the number of edges on the longest
path between that node and a leaf.
Height of a root node is Height of a Tree

Height of C is 3Height of B is 2

Height of Tree is 3

Tree Terminology

Nodes

Edges

Root

Parent or predecessor

Leaf node

Interior node

Child or successor

Siblings

Ancestors of a node

Descendants of a node

Path/Traversing

Height of Node

Height of Tree

Depth of Node

Levels of Node

Degree of Node

Subtree

Total number of edges from root node to a particular node is called
as depth of that node.
Depth of a tree is the total number of edges from root node to a leaf
node in the longest path.
Depth of the root node = 0

Depth of B is 2

Depth of Tree is 3

Tree Terminology

Nodes

Edges

Root

Parent or predecessor

Leaf node

Interior node

Child or successor

Siblings

Ancestors of a node

Descendants of a node

Path/Traversing

Height of Node

Height of Tree

Depth of Node

Levels of Node

Degree of Node

Subtree

In a tree, each step from top to bottom is called as level of a tree.
The level count starts with 0 and increments by 1 at each level or
step.

Level 0

Level 1

Level 2

Level 3

Tree Terminology

Nodes

Edges

Root

Parent or predecessor

Leaf node

Interior node

Child or successor

Siblings

Ancestors of a node

Descendants of a node

Path/Traversing

Height of Node

Height of Tree

Depth of Node

Levels of Node

Degree of Node

Subtree

Degree of a node is the total number of children of that node.
Degree of a tree is the highest degree of a node among all the
nodes in the tree.

Degree of Tree is 3

Tree Terminology

Nodes

Edges

Root

Parent or predecessor

Leaf node

Interior node

Child or successor

Siblings

Ancestors of a node

Descendants of a node

Path/Traversing

Height of Node

Height of Tree

Depth of Node

Levels of Node

Degree of Node

Subtree

• Subtree of a node: consists of a child node and all its
descendants.
• A subtree is itself a tree
• A node may have many subtrees

Subtree of Node A

Binary Tree

• Binary tree is a special tree data structure in which each node can
have at most 2 children.

• Thus, in a binary tree,
• Each node has either 0 child or 1 child or 2 children.

• i.e Binary tree is tree with degree 2

• The children(if present) are called left child and right child.

Child with Degree 2

Child with Degree 0

Child with Degree 1

Left Subtree

Right Subtree

Representation of Binary Tree

• Array Representation

• Linked Representation

Representation of Binary Tree

• Array Representation
• Node is at index i

• Left Child at 2*i+1

• Right Child at 2*i+2

• Parent at floor(i-1/2)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Representation of Binary Tree

• Array Representation
• Node is at index i

• Left Child at 2*i+1

• Right Child at 2*i+2

• Parent at floor(i-1/2)

• This approach is good, and easily we can find the index of parent and
child, but it is not memory efficient. It will occupy many spaces that
has no use.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A B C D F G H I J -- -- -- K

Representation of Binary Tree

• Linked Representation
• We use a double linked list to represent a binary tree.

• The following are types of Binary tree:
• Full/ proper/ strict Binary tree

• Complete Binary tree

• Perfect Binary tree

• Skewed Binary tree

• Balanced Binary tree

Types of Binary Tree

Full Binary Tree

• The full binary tree is a binary tree in which all the
nodes have two children except the leaf nodes.

Complete Binary Tree

• A binary tree is said to be a complete binary tree
when all the levels are completely filled except the
last level, which is filled from the left.

Perfect Binary Tree

• A tree is a perfect binary tree if all the internal nodes have 2 children,
and all the leaf nodes are at the same level.

Skewed Binary Tree

• The degenerate binary tree is a tree in which all the internal nodes
have only one children.

Balanced Binary Tree

• The balanced binary tree is a tree in which both the left and right
trees differ by atmost 1.

• For example, AVL and Red-Black trees are balanced binary tree.

Balanced Binary Tree

• The balanced binary tree is a tree in which both the left and right
trees differ by atmost 1.

• For example, AVL and Red-Black trees are balanced binary tree.

Applications of Trees

• Routing Tables

• Decision Trees

• Expression Evaluation

• Sorting

• Database Indexing

• Data Compression(Huffman Coding)

Decision Tree

Syntax Tree

Sr.N

o.

Infix Notation Prefix

Notation

Postfix

Notation

1 a + b + a b a b +

2 (a + b) ∗ c ∗ + a b c a b + c ∗

3 a ∗ (b + c) ∗ a + b c a b c + ∗

4 a / b + c / d + / a b / c d a b / c d / +

5 (a + b) ∗ (c + d) ∗ + a b + c d a b + c d + ∗

6 ((a + b) ∗ c) - d - ∗ + a b c d a b + c ∗ d -

Huffman Coding

Huffman Coding

a

e

i

o

u

s

t

Binary Tree Traversal

• Displaying (or) visiting order of all nodes in a binary tree is called as
Binary Tree Traversal.

• Tree Traversal Techniques
• Depth First Traversal

• Breadth First Traversal

Binary Tree Traversal –Depth First Traversal

• Displaying (or) visiting order of all nodes in a binary tree is called as
Binary Tree Traversal.

• Tree Traversal Techniques
• Depth First Traversal

• Preorder Traversal

• Inorder Traversal

• Postorder Traversal

Binary Tree Traversal –Preorder Traversal

• The preorder traversal of a nonempty binary tree is defined as follows:
• Visit the root node
• Traverse the left sub-tree in preorder
• Traverse the right sub-tree in preorder

• Root  left  right
• A B D E C F G

• Preorder traversal is used to get prefix expression of an expression tree.
• It is use to copy the Tree

Binary Tree Traversal –Preorder Traversal-Algorithm

• Step 1: Repeat Steps 2 to 4 while TREE != NULL

• Step 2: Write TREE DATA

• Step 3: PREORDER(TREE LEFT)

• Step 4: PREORDER(TREE RIGHT) [END OF LOOP]

• Step 5: END

Binary Tree Traversal –Inorder Traversal

• The in-order traversal of a nonempty binary tree is defined as follows:
• Traverse the left sub-tree in in-order

• Visit the root node

• Traverse the right sub-tree in inorder

• Left  Root  right

• D B E A F C G

• Inorder traversal is used to get infix expression of an expression tree.

Binary Tree Traversal –Inorder Traversal-Algorithm

• Step 1: Repeat Steps 2 to 4 while TREE != NULL

• Step 2: INORDER(TREE LEFT)

• Step 3: Write TREE DATA

• Step 4: INORDER(TREE RIGHT) [END OF LOOP]

• Step 5: ENDtree.

Binary Tree Traversal –Postorder Traversal

• The Post-order traversal of a nonempty binary tree is defined as follows:
• Traverse the left sub-tree in post-order
• Traverse the right sub-tree in post-order
• Visit the root node

• Left  Right  Root

• D E B F G C A

• Postorder traversal is used to get postfix expression of an expression tree.

• Postorder traversal is used to delete the tree.

• This is because it deletes the children first and then it deletes the parent.

Binary Tree Traversal –Postorder Traversal-Algorithm

• Step 1: Repeat Steps 2 to 4 while TREE != NULL

• Step 2: POSTORDER(TREE LEFT)

• Step 3: POSTORDER(TREE RIGHT)

• Step 4: Write TREE DATA [END OF LOOP]

• Step 5: END

Binary Tree Traversal –Breadth First Traversal

• Breadth First Traversal of a tree prints all the nodes of a tree level by
level.

• Breadth First Traversal is also called as Level Order Traversal.

• A B C D E F G

• Level order traversal is used to print the data in the same order as
stored in the array representation of a complete binary tree.

Binary Search Tree

• Binary Search Tree is a special type of binary tree that has a specific
order of elements in it. It follows three basic properties:-
• All elements in the left subtree of a node should have a value lesser than the

node’s value.

• All elements in the right subtree of a node should have a value greater
than the node’s value

• Both the left and right subtrees should be binary search trees too.

• 50, 70, 60, 20, 90, 10, 40, 100

Binary Search Tree-Construction

• Search

• Insert

• Delete

Binary Search Tree-Operations

• Search Operation is performed to search a particular element in the
Binary Search Tree.

Binary Search Tree-Search

• Search Operation is performed to search a particular element in the
Binary Search Tree.

• For searching a given key in the BST,
• Compare the key with the value of root node.

• If the key is present at the root node, then return the root node.

• If the key is greater than the root node value, then recur for the root node’s
right subtree.

• If the key is smaller than the root node value, then recur for the root node’s
left subtree.

Binary Search Tree-Search

• Our objective is to return True if a node exists with the value equal to
the item, else return False.
• Check if the root is NULL, return False if it is NULL.

• Else, Compare root.val with item

• item == root.val: return True

• item > root.val: recurse for right subtree

• item < root.val: recurse for left subtree

Binary Search Tree-Search-Algorithm

• Insertion Operation is performed to insert an element in the Binary
Search Tree.

Binary Search Tree-Insert

• Insertion Operation is performed to insert an element in the Binary
Search Tree.

• Rules-
• The insertion of a new key always takes place as the child of some leaf node.

• For finding out the suitable leaf node,
• Search the key to be inserted from the root node till some leaf node is reached.

• Once a leaf node is reached, insert the key as child of that leaf node.

Binary Search Tree-Insert

• We need to insert a node in BST with value item and return the root
of the new modified tree.
• If the root is NULL, create a new node with value item and return it.

• Else, Compare item with root.val

• If root.val < item, recurse for right subtree

• If root.val > item, recurse for left subtree

Binary Search Tree-Insert-Algorithm

• Deletion Operation is performed to delete a particular element from
the Binary Search Tree.

• Case-01: Deletion Of A Node Having No Child (Leaf Node)

• Case-02: Deletion Of A Node Having Only One Child

• Case-03: Deletion Of A Node Having Two Children

Binary Search Tree-Delete

Case-01: Deletion Of A Node Having No Child (Leaf Node)

• Just remove / disconnect the leaf node that is to deleted from the
tree.

Case-02: Deletion Of A Node Having Only One Child

• Just make the child of the deleting node, the child of its grandparent.

Case-03: Deletion Of A Node Having Two Children

• A node with two children may be deleted from the BST in the
following two ways-

Case-03: Deletion Of A Node Having Two Children

• A node with two children may be deleted from the BST in the
following two ways-

• Method-01:
• Visit to the right subtree of the deleting node.

• Pluck the least value element in the right subtree.

• Replace the deleting element with this element.

Case-03: Deletion Of A Node Having Two Children

• A node with two children may be deleted from the BST in the
following two ways-

• Method-02:
• Visit to the left subtree of the deleting node.

• Pluck the greatest value element in the right subtree.

• Replace the deleting element with this element.

Case-03: Deletion Of A Node Having Two Children

• A node with two children may be deleted from the BST in the
following two ways-

• You need to delete the node with value item and then return the root of the modified tree. First, we need to
find the node to be deleted and then replace it by the appropriate node if needed.

• Check if the root is NULL, if it is, just return the root itself. It's an empty tree!

• If root.val < item, recurse the right subtree.

• If root.val > item, recurse the left subtree.

• If both above conditions above false, this means root.val == item.

• Now we first need to check how many child did root have.

• CASE 1: No Child → Just delete root or deallocate space occupied by it

• CASE 2: One Child →Replace root by its child

• CASE 3: Two Children

• Find the inorder successor of the root (Its the smallest element of its right subtree). Let's call it new_root.

• Replace root by its inorder successor

• Now recurse to the right subtree and delete new_root.

• Return the root.

Binary Search Tree-Delete

Time Complexity of Binary Search Tree
• Time Complexity depends on Height of a Tree.

• i.e O(n) to O(logn)

