Tree

Tree

* A treeis a nonlinear data structure used to represent entities that are
in some hierarchical relationship

Linear vs Non-Linear Data Structures

Linear Data Non-Linear Data
Structure Structure

Linear vs Non-Linear Data Structures

Linear Data Structure

In a linear data structure, data elements are arranged in a
linear order where each and every elements are attached to
its previous and next adjacent.

In linear data structure, single level is involved.

[ts implementation is easy in comparison to non-Llinear data
structure.

In linear data structure, data elements can be traversed in a
single run only.

In a linear data structure, memaory is not utilized inan
efficient way.

Its examples are: array, stack, gueue, linked list, etc.

Applications of linear data structures are mainly in
application software development.

MNon-linear Data Structure

In a non-lineardata structure, data
elements are attached in hierarchically
manner.

Whereas in non-linear data structure,
multiple levels are involved.

While its implementation is complex in
comparison to linear data structure.

While in non-linear data structure, data
elements can't be traversed in a single
run only.

While in a non-linear data structure,
memaory is utilized in an efficient way.

While its examples are: trees and graphs.
Applications of non-Linear data

structures are in Artificial Intelligence
and image processing.

Tree

* A treeis a nonlinear data structure used to represent entities that are
in some hierarchical relationship

 Examples in real life:
* Family tree
Table of contents of a book
Class inheritance hierarchy in Java
Computer file system (folders and subfolders)
Decision trees
Top-Down Design

Family Tree

Examples. ,
. Family tree. dad mom

Computer File Systems

Root directory of C drive

e

Documents and Settings

/

N

T

Program Files My M

/

Desktop

Favorites

Start Menu

Adobe

N\

Microsoft Office

Top-Down Design

Temperature
CRRT TR W T
|
Selection
Menu
|
I |
Fahrenheit to Centigrade to
Cremtigrade Fahrenhei
I I
I I
Tnput Convert Tnput Convert
Fahrenhei aml oatput Centi andl ouiput
" Centigrade amtgrade || g hreahe

Tree-Definition

* A tree is a hierarchical data structure defined as a collection of nodes
and edges. Nodes represent value and nodes are connected by edges.

* Atree has the following properties:

* The tree has one node called root. The tree originates from this, and hence it
does not have any parent.

* Each node has one parent only but can have multiple children.
* Each node is connected to its children via edge.

Nodes

Edges

Root

Parent or predecessor
Leaf node

Interior node

Child or successor
Siblings

Ancestors of a node
Descendants of a node
Path/Traversing
Height of Node
Depth of Node
Height of Tree
Levels of Node
Degree of Node
Subtree

Tree Terminology

Parent of
D,E,F

Nodes: Individual Elements in Tree

Nodes

Edges

Root

Parent or predecessor
Leaf node

Interior node

Child or successor
Siblings

Ancestors of a node
Descendants of a node
Path/Traversing
Height of Node
Depth of Node
Height of Tree
Levels of Node
Degree of Node
Subtree

Tree Terminology

Parent of
D,E,F

The connecting link between any two nodes is called as an edge.
In a tree with n number of nodes, there are exactly (n-1) number of
edges.

Nodes

Edges

Root

Parent or predecessor
Leaf node

Interior node

Child or successor
Siblings

Ancestors of a node
Descendants of a node
Path/Traversing
Height of Node
Depth of Node
Height of Tree
Levels of Node
Degree of Node
Subtree

Tree Terminology

Parent of
D,E,F

The first node from where the tree originates is called as a root node.
In any tree, there must be only one root node.
We can never have multiple root nodes in a tree data structure.

The node which has a branch from it to any other node is called as a parent node.
In other words, the node which has one or more children is called as a parent node.
In a tree, a parent node can have any number of child nodes.

Nodes

Edges

Root

Parent or predecessor
Leaf node

Interior node

Child or successor
Siblings

Ancestors of a node
Descendants of a node
Path/Traversing
Height of Node
Depth of Node
Height of Tree
Levels of Node
Degree of Node
Subtree

Tree Terminology

B

Leaf Node

The node which does not have any child is called as a leaf node.
Leaf nodes are also called as external nodes or terminal nodes.

Nodes

Edges

Root

Parent or predecessor
Leaf node

Interior node

Child or successor
Siblings

Ancestors of a node
Descendants of a node
Path/Traversing
Height of Node
Depth of Node
Height of Tree
Levels of Node
Degree of Node
Subtree

Tree Terminology

The node which has at least one child is called as an internal node.
Internal nodes are also called as non-terminal nodes.
Every non-leaf node is an internal node.

Nodes

Edges

Root

Parent or predecessor
Leaf node

Interior node

Child or successor
Siblings

Ancestors of a node
Descendants of a node
Path/Traversing
Height of Node
Depth of Node
Height of Tree
Levels of Node
Degree of Node
Subtree

Tree Terminology

Sibling: The nodes that have the same parent are known as siblings.

Nodes

Edges

Root

Parent or predecessor
Leaf node

Interior node

Child or successor
Siblings

Ancestors of a node
Descendants of a node
Path/Traversing
Height of Node
Depth of Node
Height of Tree
Levels of Node
Degree of Node
Subtree

Tree Terminology

Ancestor node:- An ancestor of a node is any predecessor node on a path from
the root to that node. The root node doesn't have any ancestors.

In the tree shown in the above image, nodes A, B, and E are the ancestors of
node J.

Nodes

Edges

Root

Parent or predecessor
Leaf node

Interior node

Child or successor
Siblings

Ancestors of a node
Descendants of a node
Path/Traversing
Height of Node
Depth of Node
Height of Tree
Levels of Node
Degree of Node
Subtree

Tree Terminology

Descendant: An descendent of a node is any successor node on a path
from the node to the leaf.

The leaf node doesn't have any descendants

In the tree shown in the above image, nodes C,G and K are the
descendants of node A.

Nodes

Edges

Root

Parent or predecessor
Leaf node

Interior node

Child or successor
Siblings

Ancestors of a node
Descendants of a node
Path/Traversing
Height of Node
Height of Tree

Depth of Node
Levels of Node
Degree of Node
Subtree

Tree Terminology

Path is a number of successive edges from source node to destination
node.

Nodes

Edges

Root

Parent or predecessor
Leaf node

Interior node

Child or successor
Siblings

Ancestors of a node
Descendants of a node
Path/Traversing
Height of Node
Height of Tree

Depth of Node
Levels of Node
Degree of Node
Subtree

Tree Terminology

Height of B is 2 Height of Cis 3

Height of a node represents the number of edges on the longest
path between that node and a leaf.
Height of a root node is Height of a Tree

Tree Terminology

Nodes
Edges
Root

Parent or predecessor
Leaf _nOde Depth of Bis 2
Interior node
Child or successor
Siblings

Ancestors of a node
Descendants of a node
Path/Traversing
Height of Node

Height of Tree Total number of edges from root node to a particular node is called

Depth of Node as depth of that node.
L_evels of Node Depth of a tree is the total number of edges from root node to a leaf

node in the longest path.
gegtrriee of Node Depth of the root node =0
u

Depth of Tree is 3

Nodes

Edges

Root Level 0
Parent or predecessor

Leaf node

Interior node Level 1
Child or successor
Siblings

Ancestors of a node
Descendants of a node
Path/Traversing
Height of Node Level 3
Height of Tree

Depth of Node

Levels of Node

Degree of Node

Subtree

Level 2

Tree Terminology

In a tree, each step from top to bottom is called as level of a tree.
The level count starts with 0 and increments by 1 at each level or
step.

Nodes

Edges

Root

Parent or predecessor
Leaf node

Interior node

Child or successor
Siblings

Ancestors of a node
Descendants of a node
Path/Traversing
Height of Node
Height of Tree

Depth of Node
Levels of Node
Degree of Node
Subtree

Tree Terminology

Degree of Tree is 3

Degree of a node is the total number of children of that node.
Degree of a tree is the highest degree of a node among all the
nodes in the tree.

Tree Terminology

Nodes
Edges Subtree of Node A
Root

Parent or predecessor
Leaf node

Interior node

Child or successor
Siblings

Ancestors of a node
Descendants of a node
Path/Traversing
Height of Node
Height of Tree

Depth of Node

Levels of Node
Degree of Node
Subtree

e Subtree of a node: ednsists of a child node and all its

erdants:
A subtree is itself a tree
* A node may have many subtrees

Binary Tree

* Binary tree is a special tree data structure in which each node can
have at most 2 children.

* Thus, in a binary tree,
* Each node has either 0 child or 1 child or 2 children.
* i.e Binary tree is tree with degree 2
* The children(if present) are called left child and right child.

Child with Degree 2

.

Child with Degree 1

N

Right Subtree

Left Subtree

Child with Degree 0

Representation of Binary Tree
* Array Representation
* Linked Representation

Representation of Binary Tree

* Array Representation
* Node is at index i
e Left Child at 2*i+1
e Right Child at 2*i+2
* Parent at floor(i-1/2)

0 [1]2 3 14 5 |6 |7 |8 |9 |10 111213 |14 15

Representation of Binary Tree

* Array Representation
* Node is at index i
e Left Child at 2*i+1
e Right Child at 2*i+2
* Parent at floor(i-1/2)

* This approach is good, and easily we can find the index of parent and
child, but it is not memory efficient. It will occupy many spaces that
has no use.

0 [1]2 3 14 5 |6 |7 |8 |9 |10 111213 |14 15
A B C D F G H I J = | = | K

Representation of Binary Tree

* Linked Representation

* We use a double linked list to represent a binary tree.

Left Child Right Child
Adcdress Data I cdress
i
/.r" B A /.-" C "-.\
_.'I '\.\. HILLL F BMLL NILULL G l‘-\. I LN H HU

=1
]

lllll

Types of Binary Tree

* The following are types of Binary tree:
* Full/ proper/ strict Binary tree

Complete Binary tree

Perfect Binary tree

Skewed Binary tree

Balanced Binary tree

Full Binary Tree

* The full binary tree is a binary tree in which all the
nodes have two children except the leaf nodes.

Complete Binary Tree

* A binary tree is said to be a complete binary tree
when all the levels are completely filled except the
last level, which is filled from the left.

Perfect Binary Tree

* Atreeis a perfect binary tree if all the internal nodes have 2 children,
and all the leaf nodes are at the same level.

Skewed Binary Tree

* The degenerate binary tree is a tree in which all the internal nodes
have only one children.

Balanced Binary Tree

* The balanced binary tree is a tree in which both the left and right
trees differ by atmost 1.

* For example, AVL and Red-Black trees are balanced binary tree.

Balanced Binary Tree

* The balanced binary tree is a tree in which both the left and right
trees differ by atmost 1.

* For example, AVL and Red-Black trees are balanced binary tree.

Applications of Trees

* Routing Tables

* Decision Trees

* Expression Evaluation

* Sorting

* Database Indexing

* Data Compression(Huffman Coding)

Decision Tree

Is shape
roundish?

Not Apple

Is it green, red,
or yellow?

Not Apple

Not Apple

Syntax Tree

Infix Notation Prefix Postfix
Notation Notation

+ab ab+

(a+b)*xc *+abc ab+cx
ax(b+c) *a+bc abc+x
a/b+c/d +/ab/cd ab/cd/+
(a+b)*(c+d) *+ab+cd ab+cd+=x*

((a+b)*c)-d -x+abcd ab+cxd-

Huffman Coding

Characters Frequencies
: o ONONO ONONO
. 15 t o u a i s e
i : (2 © ONONO
0 3 u a i S e
u 4 o o
5 13 t ©
t 1

Q. 000C

Huffman Coding

ONONONCRCNONC Q. © 00
O

A@Q@@@ 4

© 00 ¢
oYe
O ¢

t

Binary Tree Traversal

* Displaying (or) visiting order of all nodes in a binary tree is called as
Binary Tree Traversal.

* Tree Traversal Techniques
* Depth First Traversal
* Breadth First Traversal

Binary Tree Traversal —Depth First Traversal

* Displaying (or) visiting order of all nodes in a binary tree is called as
Binary Tree Traversal.

* Tree Traversal Techniques

* Depth First Traversal
* Preorder Traversal
* Inorder Traversal
* Postorder Traversal

Binary Tree Traversal —Preorder Traversal

* The preorder traversal of a nonempty binary tree is defined as follows:
e Visit the root node
e Traverse the left sub-tree in preorder
e Traverse the right sub-tree in preorder

* Root 2 left =2 right

*ABDECFG

* Preorder traversal is used to get prefix expressic
* |tis use to copy the Tree

Binary Tree Traversal —Preorder Traversal-Algorithm

e Step 1: Repeat Steps 2 to 4 while TREE = NULL
e Step 2: Write TREE DATA

e Step 3: PREORDER(TREE LEFT)

e Step 4: PREORDER(TREE RIGHT) [END OF LOOP]
* Step 5: END

Binary Tree Traversal —=Inorder Traversal

* The in-order traversal of a nonempty binary tree is defined as follows:
* Traverse the left sub-tree in in-order
* Visit the root node
* Traverse the right sub-tree in inorder

 Left 2 Root = right
*DBEAFCG

* Inorder traversal is used to get infix expression of an expression tree.

Binary Tree Traversal —Inorder Traversal-Algorithm

e Step 1: Repeat Steps 2 to 4 while TREE = NULL
e Step 2: INORDER(TREE LEFT)

* Step 3: Write TREE DATA

e Step 4: INORDER(TREE RIGHT) [END OF LOOP]
* Step 5: ENDtree.

Binary Tree Traversal —Postorder Traversal

The Post-order traversal of a nonempty binary tree is defined as follows:
* Traverse the left sub-tree in post-order
* Traverse the right sub-tree in post-order
* Visit the root node

Left = Right = Root
DEBFGCA

Postorder traversal is used to get postfix expression of an expression tree.
Postorder traversal is used to delete the tree.
This is because it deletes the children first and then it deletes the parent.

Binary Tree Traversal —Postorder Traversal-Algorithm

e Step 1: Repeat Steps 2 to 4 while TREE = NULL
e Step 2: POSTORDER(TREE LEFT)

e Step 3: POSTORDER(TREE RIGHT)

 Step 4: Write TREE DATA [END OF LOOP]

* Step 5: END

Binary Tree Traversal —Breadth First Traversal

* Breadth First Traversal of a tree prints all the nodes of a tree level by
level.

 Breadth First Traversal is also called as Level Order Traversal.

*ABCDEFG

* Level order traversal is used to print the data in the same order as
stored in the array representation of a complete binary tree.

Binary Search Tree

* Binary Search Tree is a special type of binary tree that has a specific
order of elements in it. It follows three basic properties:-

* All elements in the left subtree of a node should have a value lesser than the
node’s value.

* All elements in the right subtree of a node should have a value greater
than the node’s value

* Both the left and right subtrees should be binary search trees too.

Binary Search Tree-Construction

* 50, 70, 60, 20, 90, 10, 40, 100

Binary Search Tree-Operations

e Search
* Insert
e Delete

Binary Search Tree-Search

e Search Operation is performed to search a particular element in the
Binary Search Tree.

Binary Search Tree

Binary Search Tree-Search

e Search Operation is performed to search a particular element in the
Binary Search Tree.

* For searching a given key in the BST,
e Compare the key with the value of root node.
* If the key is present at the root node, then return the root node.

* If the key is greater than the root node value, then recur for the root node’s
right subtree.

* |f the key is smaller than the root node value, then recur for the root node’s
left subtree.

Binary Search Tree-Search-Algorithm

* Our objective is to return True if a node exists with the value equal to
the item, else return False.
* Check if the root is NULL, return False if it is NULL.
Else, Compare root.val with item
e jtem ==root.val: return True
item > root.val: recurse for right subtree
item < root.val: recurse for left subtree

Binary Search Tree-Insert

* Insertion Operation is performed to insert an element in the Binary
Search Tree.

Insert 40 l

Binary Search Tree-Insert

* Insertion Operation is performed to insert an element in the Binary
Search Tree.

* Rules-
* The insertion of a new key always takes place as the child of some leaf node.

* For finding out the suitable leaf node,
e Search the key to be inserted from the root node till some leaf node is reached.
* Once aleaf node is reached, insert the key as child of that leaf node.

Binary Search Tree-Insert-Algorithm

* We need to insert a node in BST with value item and return the root
of the new modified tree.
* If the root is NULL, create a new node with value item and return it.
* Else, Compare item with root.val
* If root.val < item, recurse for right subtree
* If root.val > item, recurse for left subtree

Binary Search Tree-Delete

* Deletion Operation is performed to delete a particular element from
the Binary Search Tree.

e Case-01: Deletion Of A Node Having No Child (Leaf Node)
e Case-02: Deletion Of A Node Having Only One Child
e Case-03: Deletion Of A Node Having Two Children

Case-01: Deletion Of A Node Having No Child (Leaf Node)

 Just remove / disconnect the leaf node that is to deleted from the
tree.

Delete 20 l

Case-02: Deletion Of A Node Having Only One Child
* Just make the child of the deleting node, the child of its grandparent.

1 Delete 30 l

Case-03: Deletion Of A Node Having Two Children

* A node with two children may be deleted from the BST in the
following two ways-

Delete 15 l

Case-03: Deletion Of A Node Having Two Children

* A node with two children may be deleted from the BST in the
following two ways-

* Method-01:

* Visit to the right subtree of the deleting node.
* Pluck the least value element in the right subtree.
* Replace the deleting element with this element.

Case-03: Deletion Of A Node Having Two Children

* A node with two children may be deleted from the BST in the
following two ways-

* Method-02:

* Visit to the left subtree of the deleting node.
* Pluck the greatest value element in the right subtree.
* Replace the deleting element with this element.

Case-03: Deletion Of A Node Having Two Children

* A node with two children may be deleted from the BST in the
following two ways-

Delete 15 I

Binary Search Tree-Delete

You need to delete the node with value item and then return the root of the modified tree. First, we need to
find the node to be deleted and then replace it by the appropriate node if needed.

Check if the root is NULL, if it is, just return the root itself. It's an empty tree!
If root.val < item, recurse the right subtree.

If root.val > item, recurse the left subtree.

If both above conditions above false, this means root.val == item.

Now we first need to check how many child did root have.

CASE 1: No Child - Just delete root or deallocate space occupied by it

CASE 2: One Child ->Replace root by its child

CASE 3: Two Children

Find the inorder successor of the root (Its the smallest element of its right subtree). Let's call it new_root.
Replace root by its inorder successor

Now recurse to the right subtree and delete new_root.

Return the root.

Time Complexity of Binary Search Tree
* Time Complexity depends on Height of a Tree.

* i.e O(n) to O(logn)

Balanced Binary Search Tree

Skewed Binary Search Tree

